Appendix D
This appendix presents the derivation of power expressions for both sinusoidal and direct current (DC) signals.
Power of sinusoid#
The power of a periodic function is defined as the integral of its squared value over one period, normalized by the period duration:
\[ P_x = \frac{1}{T} \int\limits_{0}^{T} \left( x(t) \right)^2 dt \]For the sine function \( x(t) = A\sin(t) \):
\[ P_x = \frac{1}{T} \int\limits_{0}^{T} \left( A\sin(t) \right)^2 dt \]Expanding the square:
\[ P_x = \frac{A^2}{T} \int\limits_{0}^{T} \sin^2(t) \, dt \]Using the trigonometric identity:
\[ \sin^2(t) = \frac{1 - \cos(2t)}{2} \]We rewrite the integral:
\[ P_x = \frac{A^2}{T} \int\limits_{0}^{T} \frac{1 - \cos(2t)}{2} \, dt = \color{red}{\frac{A^2}{2T} \int\limits_{0}^{T} 1 \, dt} \color{#222832} {\ -\ } \color{green}{\frac{A^2}{2T} \int\limits_{0}^{T} \cos(2t) \, dt} \]Evaluating the integrals:
-
First integral:
\[ \color{red}{\frac{A^2}{2T} \int\limits_{0}^{T} 1 \, dt = \frac{A^2}{2T} \cdot \left[ t \right]_0^T = \frac{A^2}{2T} \cdot T = \frac{A^2}{2}} \] -
Second integral:
\[ \color{green}{\frac{A^2}{2T} \int\limits_{0}^{T} \cos(2t) \, dt = \frac{A^2}{2T} \cdot \left[ \frac{\sin(2t)}{2} \right]_0^T = \frac{A^2}{4T} \left( \sin(2T) - \sin(0) \right) = 0} \]Since \( \sin(2T) = 0 \) for a full period \( T \).
Final Result:
Thus, the power of a sine function over one period is:
\[
P_x = \frac{A^2}{2}
\]
The power of the DC component#
\[ P_x = \frac{1}{T} \int\limits_{0}^{T} A^2 \, dt = \frac{A^2}{T} \int\limits_{0}^{T} 1 \, dt = \frac{A^2}{T} \cdot \left[ t \right]_0^T = \frac{A^2}{T} \cdot T = A^2 \]
\[
P_x = A^2
\]