Appendix B

Integrals of Sinusoidal Products#

This appendix contains the derivations of three integrals utilized in various book sections.

0Tsin(mωt)cos(nωt)dt=0 0Tsin(mωt)sin(nωt)dt={0if mnT2if m=n 0Tcos(mωt)cos(nωt)dt={0if mnT2if m=n

Where:

  • m and n are integers
  • T is a full period time corresponding to an angle of 2π
  • ω is the angular frequency
  • t is time

ωt represents an angle.

We assume that all sine and cosine functions are periodic over period T. A periodic signal is defined as a signal that repeats itself at regular intervals over time. Mathematically, a signal x(t) is periodic if there exists a positive constant T, known as the period, such that:

x(t)=x(t+T),for all t

A signal is classified as aperiodic if it does not meet these conditions.

The fundamental frequency of a periodic signal is given by:

f0=1T

Additionally, sine functions with frequencies that are integer multiples of f0 (i.e., kf0 for kZ) remain periodic over period T. Notice that the green sine wave is aperiodic, as it completes 1.5 cycles within the interval T, meaning it does not repeat itself consistently over T.

Periodic functions

The integral of sine and cosine product#

0Tsin(mωt)cos(nωt)dt

Applying the trigonometric identity:

sin(α)cos(β)=12[sin(α+β)+sin(αβ)] =120T[sin((m+n)ωt)+sin((mn)ωt)]dt =120Tsin((m+n)ωt)dt + 120Tsin((mn)ωt)dt

First integral solution:

120Tsin((m+n)ωt)dt=12(m+n)ω[cos((m+n)ωt)]0T=12(m+n)ω(11)=0

Second integral solution:

120Tsin((mn)ωt)dt=12(mn)ω[cos((mn)ωt)]0T=12(mn)ω(11)=0

The integral of two sines product#

0Tsin(mωt)sin(nωt)dt

Let us apply the trigonometric identity for the product of two sines:

sin(α)sin(β)=12[cos(αβ)cos(α+β)] =120T[cos(mωtnωt)cos(mωt+nωt)]dt

For m=n:

=120T[cos(0)cos(mωt+mωt)]dt=120T[1cos(2mωt)]dt =120Tdt120Tcos(2mωt)dt =12[t]0T14mω[sin(2mωt)]0T=12(T0)(00)4ω=T2

For mn

=120Tcos(mωtnωt)dt  120Tcos(mωt+nωt)dt

First integral solution:

120Tcos((mn)ωt)dt=12(mn)ω[sin((mn)ωt)]0T=12(mn)ω(00)=0

Second integral solution:

120Tcos((m+n)ωt)dt=12(m+n)ω[sin((m+n)ωt)]0T=12(m+n)ω(00)=0

The integral of two cosines product#

0Tcos(mωt)cos(nωt)dt

Let us apply the trigonometric identity for the product of two cosines:

cos(α)cos(β)=12[cos(αβ)+cos(α+β)] =120T[cos(mωtnωt)+cos(mωt+nωt)]dt

For m=n:

=120T[cos(0)+cos(mωt+mωt)]dt=120T[1+cos(2mωt)]dt =120Tdt+120Tcos(2mωt)dt =12[t]0T+14mω[sin(2mωt)]0T=12(T0)+(00)4ω=T2

For mn:

=120Tcos(mωtnωt)dt + 120Tcos(mωt+nωt)dt

First integral solution:

120Tcos((mn)ωt)dt=12(mn)ω[sin((mn)ωt)]0T=12(mn)ω(00)=0

Second integral solution:

120Tcos((m+n)ωt)dt=12(m+n)ω[sin((m+n)ωt)]0T=12(m+n)ω(00)=0